Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Más filtros













Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400506, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712468

RESUMEN

Curcumin is a natural product found in the rhizome of Curcuma longa (L) and other Curcuma spp. As a lipophilic molecule, it has greater affinity for polar, non-polar, alkaline or extremely acidic organic solvents. Several studies indicate that curcumin has several benefits for human health, for example, against degenerative diseases, cancer and infectious diseases. To obtain a quality product with nutraceutical properties, it is necessary to know its physicochemical characteristics and preserve it from cultivation until ingestion by the human. However, its low solubility leads to low absorption, in this context, nanotechnological systems can contribute to increase curcumin bioavailability. This review aims to highlight important issues in all stages that curcumin goes through: from aspects related to its extraction, to its association with nanotechnology. Although curcumin extraction process is already well established, it is possible to observe that more and more research focused on increasing yield and being more environmentally friendly. Furthermore, curcumin's low absorption is notable due to its physicochemical characteristics, mainly due to its low aqueous solubility. However, its association with nanotechnology has shown to be promising and an increasingly growing trend, since the use of this "Indian solid gold" is the hope of many patients. This article is protected by copyright. All rights reserved.

2.
Chem Biol Interact ; 395: 111009, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641145

RESUMEN

The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.

3.
ACS Appl Mater Interfaces ; 16(15): 18643-18657, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564504

RESUMEN

Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.


Asunto(s)
Nanopartículas , Tendinopatía , Animales , Humanos , Ratones , Polímeros , ARN Interferente Pequeño/genética , Budesonida , Macrófagos , Inflamación , Lípidos , Fibrosis
4.
Nano Lett ; 24(14): 4064-4071, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38466130

RESUMEN

Herein, we fabricate host-directed virus-mimicking particles (VMPs) to block the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells through competitive inhibition enabled by their interactions with the angiotensin-converting enzyme 2 (ACE2) receptor. A microfluidic platform is developed to fabricate a lipid core of the VMPs with a narrow size distribution and a low level of batch-to-batch variation. The resultant solid lipid nanoparticles are decorated with an average of 231 or 444 Spike S1 RBD protrusions mimicking either the original SARS-CoV-2 or its delta variant, respectively. Compared with that of the nonfunctionalized core, the cell uptake of the functionalized VMPs is enhanced with ACE2-expressing cells due to their strong interactions with the ACE2 receptor. The fabricated VMPs efficiently block the entry of SARS-CoV-2 pseudovirions into host cells and suppress viral infection. Overall, this study provides potential strategies for preventing the spread of SARS-CoV-2 or other coronaviruses employing the ACE2 receptor to enter into host cells.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica
5.
Adv Healthc Mater ; : e2302074, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499190

RESUMEN

Atherosclerosis still represents a major driver of cardiovascular diseases worldwide. Together with accumulation of lipids in the plaque, inflammation is recognized as one of the key players in the formation and development of atherosclerotic plaque. Systemic anti-inflammatory treatments are successful in reducing the disease burden, but are correlated with severe side effects, underlining the need for targeted formulations. In this work, curcumin is chosen as the anti-inflammatory payload model and further loaded in lignin-based nanoparticles (NPs). The NPs are then coated with a tannic acid (TA)- Fe (III) complex and further cloaked with fragments derived from platelet cell membrane, yielding NPs with homogenous size. The two coatings increase the interaction between the NPs and cells, both endothelial and macrophages, in steady state or inflamed status. Furthermore, NPs are cytocompatible toward endothelial, smooth muscle and immune cells, while not inducing immune activation. The anti-inflammatory efficacy is demonstrated in endothelial cells by real-time quantitative polymerase chain reaction and ELISA assay where curcumin-loaded NPs decrease the expression of Nf-κb, TGF-ß1, IL-6, and IL-1ß in lipopolysaccharide-inflamed cells. Overall, due to the increase in the cell-NP interactions and the anti-inflammatory efficacy, these NPs represent potential candidates for the targeted anti-inflammatory treatment of atherosclerosis.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38472726

RESUMEN

Several drugs can be used for treating inflammatory skin pathologies like dermatitis and psoriasis. However, for the management of chronic and long-term cases, topical administration is preferred over oral delivery since it prevents certain issues due to systemic side effects from occurring. Cyclosporin A (CsA) has been used for this purpose; however, its high molecular weight (1202 Da) restricts the diffusion through the skin structure. Here, we developed a nano-in-micro device combining lipid vesicles (LVs) and dissolving microneedle array patches (DMAPs) for targeted skin delivery. CsA-LVs allowed the effective incorporation of CsA in the hydrophilic DMAP matrix despite the hydrophobicity of the drug. Polymeric matrix composed of poly (vinyl alcohol) (5% w/v), poly (vinyl pyrrolidine) (15% w/v) and CsA-LV dispersion (10% v/v) led to the formation of CsA-LVs@DMAPs with adequate mechanical properties to penetrate the stratum corneum barrier. The safety and biocompatibility were ensured in an in vitro viability test using HaCaT keratinocytes and L929 fibroblast cell lines. Ex vivo permeability studies in a Franz-diffusion cell setup showed effective drug retention in the skin structure. Finally, CsA-LVs@DMAPs were challenged in an in vivo murine model of delayed-type hypersensitivity to corroborate their potential to ameliorate skin inflammatory conditions. Different findings like photon emission reduction in bioluminescence study, normalisation of histological damage and decrease of inflammatory cytokines point out the effectivity of CsA-LVs@DMAPs to treat these conditions. Overall, our study demonstrates that CsA-LVs@DMAPs can downregulate the skin inflammatory environment which paves the way for their clinical translation and their use as an alternative to corticosteroid-based therapies.

7.
Heliyon ; 10(4): e25878, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384564

RESUMEN

Bone tissue engineering (BTE) involves the design of three-dimensional (3D) scaffolds that aim to address current challenges of bone defect healing, such as limited donor availability, disease transmission risks, and the necessity for multiple invasive surgeries. Scaffolds can mimic natural bone structure to accelerate the mechanisms involved in the healing process. Herein, a crosslinked combination of biopolymers, including gelatin (GEL), chitosan (CS), and hyaluronic acid (HA), loaded with diatom (Di) and ß-sitosterol (BS), is used to produce GCH-Di-S scaffold by freeze-drying method. The GCH scaffold possesses a uniform structure, is biodegradable and biocompatible, and exhibits high porosity and interconnected pores, all required for effective bone repair. The incorporation of Di within the scaffold contributes to the adjustment of porosity and degradation, as well as effectively enhancing the mechanical property and biomineralization. In vivo studies have confirmed the safety of the scaffold and its potential to stimulate the creation of new bone tissue. This is achieved by providing an osteoconductive platform for cell attachment, prompting calcification, and augmenting the proliferation of osteoblasts, which further contributes to angiogenesis and anti-inflammatory effects of BS.

8.
Adv Mater ; 36(19): e2310318, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38320755

RESUMEN

Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.


Asunto(s)
Neoplasias , Neutrófilos , Microambiente Tumoral , Humanos , Neutrófilos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Animales , Microambiente Tumoral/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Vesículas Extracelulares/metabolismo , Portadores de Fármacos/química
9.
J Control Release ; 366: 621-636, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215986

RESUMEN

Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptidos Similares al Glucagón , Lactatos , Nanopartículas , Polietilenglicoles , Recién Nacido , Humanos , Células CACO-2 , Péptidos , Receptores Fc
10.
ACS Nano ; 18(4): 2982-2991, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235677

RESUMEN

Cells are damaged during hypoxia (blood supply deprivation) and reoxygenation (oxygen return). This damage occurs in conditions such as cardiovascular diseases, cancer, and organ transplantation, potentially harming the tissue and organs. The role of free radicals in cellular metabolic reprogramming under hypoxia is under debate, but their measurement is challenging due to their short lifespan and limited diffusion range. In this study, we employed a quantum sensing technique to measure the real-time production of free radicals at the subcellular level. We utilize fluorescent nanodiamonds (FNDs) that exhibit changes in their optical properties based on the surrounding magnetic noise. This way, we were able to detect the presence of free radicals. To specifically monitor radical generation near mitochondria, we coated the FNDs with an antibody targeting voltage-dependent anion channel 2 (anti-VDAC2), which is located in the outer membrane of mitochondria. We observed a significant increase in the radical load on the mitochondrial membrane when cells were exposed to hypoxia. Subsequently, during reoxygenation, the levels of radicals gradually decreased back to the normoxia state. Overall, by applying a quantum sensing technique, the connections among hypoxia, free radicals, and the cellular redox status has been revealed.


Asunto(s)
Hipoxia , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Radicales Libres/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo
11.
Adv Mater ; 36(5): e2310979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994277

RESUMEN

The immunomodulatory effect of divalent manganese cations (Mn2+ ), such as activation of the cGAS-STING pathway or NLRP3 inflammasomes, positions them as adjuvants for cancer immunotherapy. In this study, it is found that trace Mn2+ ions, bound to bovine serum albumin (BSA) to form Mn@BSA nanocomplexes, stimulate pro-inflammatory responses in human- or murine-derived macrophages through TLR4-mediated signaling cascades. Building on this, the assembly of Mn@BSA nanocomplexes to obtain nanowire structures enables stronger and longer-lasting immunostimulation of macrophages by regulating phagocytosis. Furthermore, Mn@BSA nanocomplexes and their nanowires efficiently activate peritoneal macrophages, reprogramme tumor-associated macrophages, and inhibit the growth of melanoma tumors in vivo. They also show better biosafety for potential clinical applications compared to typical TLR4 agonists such as lipopolysaccharides. Accordingly, the findings provide insights into the mechanism of metalloalbumin complexes as potential TLR agonists that activate macrophage polarization and highlight the importance of their nanostructures in regulating macrophage-mediated innate immunity.


Asunto(s)
Nanocables , Receptor Toll-Like 4 , Ratones , Humanos , Animales , Receptor Toll-Like 4/metabolismo , Manganeso , Macrófagos/metabolismo , Albúmina Sérica Bovina/química
12.
Chem Biol Interact ; 385: 110737, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774998

RESUMEN

Chronic respiratory diseases like asthma and Chronic Obstructive Pulmonary Disease (COPD) have been a burden to society for an extended period. Currently, there are only preventative treatments in the form of mono- or multiple-drug therapy available to patients who need to utilize it daily. Hence, throughout the years there has been a substantial amount of research in understanding what causes inflammation in the context of these diseases. For example, the transcription factor NFκB has a pivotal role in causing chronic inflammation. Subsequent research has been exploring ways to block the activation of NFκB as a potential therapeutic strategy for many inflammatory diseases. One of the possible ways through which this is probable is the utilisation of decoy oligodeoxynucleotides, which are synthetic, short, single-stranded DNA fragments that mimic the consensus binding site of a targeted transcription factor, thereby functionally inactivating it. However, limitations to the implementation of decoy oligodeoxynucleotides include their rapid degradation by intracellular nucleases and the lack of targeted tissue specificity. An advantageous approach to overcome these limitations involves using nanoparticles as a vessel for drug delivery. In this review, all of those key elements will be explored as to how they come together as an application to treat chronic inflammation in respiratory diseases.

13.
Adv Drug Deliv Rev ; 200: 115050, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37549847

RESUMEN

Novel transplantation techniques are currently under development to preserve the function of impaired tissues or organs. While current technologies can enhance the survival of recipients, they have remained elusive to date due to graft rejection by undesired in vivo immune responses despite systemic prescription of immunosuppressants. The need for life-long immunomodulation and serious adverse effects of current medicines, the development of novel biomaterial-based immunoengineering strategies has attracted much attention lately. Immunomodulatory 3D platforms can alter immune responses locally and/or prevent transplant rejection through the protection of the graft from the attack of immune system. These new approaches aim to overcome the complexity of the long-term administration of systemic immunosuppressants, including the risks of infection, cancer incidence, and systemic toxicity. In addition, they can decrease the effective dose of the delivered drugs via direct delivery at the transplantation site. In this review, we comprehensively address the immune rejection mechanisms, followed by recent developments in biomaterial-based immunoengineering strategies to prolong transplant survival. We also compare the efficacy and safety of these new platforms with conventional agents. Finally, challenges and barriers for the clinical translation of the biomaterial-based immunoengineering transplants and prospects are discussed.


Asunto(s)
Materiales Biocompatibles , Rechazo de Injerto , Humanos , Rechazo de Injerto/prevención & control , Inmunosupresores/uso terapéutico , Inmunomodulación , Supervivencia de Injerto
14.
J Control Release ; 362: 225-242, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625597

RESUMEN

Here, we fabricated nanoparticles made solely from the membrane of cells found in the pancreatic tumour's microenvironment (TME), like the human MiaPaCa-2 cells and M2-polarized macrophages. The cell membrane-derived nanoparticles (CMNPs) deriving from the MiaPaCa-2 cells (MPC2-CMNPs) were loaded with the chemotherapeutic drug paclitaxel (PTX), and the CMNPs deriving from M2-polarized macrophages (M2-CMNPs) were loaded with the colony-stimulating factor 1 receptor inhibitor, pexidartinib (PXDB). The CMNPs' thorough morphological and physicochemical characterisation was followed by an in-depth study of their targeting ability and the endocytosis pathway involved during their internalisation. An in vitro model of the desmoplastic stroma comprising cancer-associated fibroblast-mimicking cells and M2-polarized macrophages was also developed. The model was characterised by collagen and α-smooth muscle actin (α-SMA) expression (overexpressed in desmoplasia) and was used to assess the CMNPs' ability to cross the stroma and target the tumour cells. Moreover, we assessed the effect of PXDB-loaded M2-CMNPs on the expression of M1 (CD80/CD86) and M2 (CD206/CD209) polarisation markers on activated macrophages. Finally, we evaluated the PTX and PXDB-loaded CMNPs' effect on the viability of all the used TME cell lines alone or in combination. Overall, this pilot study showed the potential of the CMNPs to cross an in vitro stroma model and act synergistically to treat PDAC.

15.
Eur J Pharm Biopharm ; 190: 73-80, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479064

RESUMEN

Odoribacter (O.) splanchnicus is an anaerobic member of the human intestinal microbiota. Its decrease in abundance has been associated with inflammatory bowel disease (IBD), non-alcoholic fatty liver, and cystic fibrosis. Considering the anti-inflammatory properties of O. splanchnicus and its possible use for IBD, intestinal isolate O. splanchnicus 57 was here formulated for oral colonic release based on a time-dependent strategy. Freeze-drying protocol was determined to ensure O. splanchnicus 57 viability during the process. Disintegrating tablets, containing the freeze-dried O. splanchnicus 57, were manufactured by direct compression and coated by powder-layering technique with hydroxypropyl methylcellulose (Methocel™ E50) in a tangential-spray fluid bed. Eudragit® L was then applied by spray-coating in a top-spray fluid bed. Double-coated tablets were tested for release, showing gastric resistance properties and, as desired, lag phases of reproducible duration prior to release in phosphate buffer pH 6.8. The cell viability and anti-inflammatory activity of the strain were assessed after the main manufacturing steps. While freeze-drying did not affect bacterial viability, the tableting and coating processes were more stressful. Nonetheless, O. splanchnicus 57 cells survived manufacturing and the final formulations had 106-107 CFU/g of viable cells. The strain kept its anti-inflammatory properties after tableting and coating, reducing Escherichia coli lipopolysaccharide-induced interleukin-8 cytokine release from HT-29 cells. Overall, O. splanchnicus 57 strain was formulated successfully for oral colon delivery, opening new ways to formulate pure cultures of single anaerobic strains or mixtures for oral delivery.


Asunto(s)
Colon , Enfermedades Inflamatorias del Intestino , Humanos , Anaerobiosis , Concentración de Iones de Hidrógeno , Colon/metabolismo , Comprimidos/metabolismo , Antiinflamatorios/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Sistemas de Liberación de Medicamentos
16.
Langmuir ; 39(23): 8255-8266, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37265082

RESUMEN

In vitro cell-based characterization methods of nanoparticles are generally static and require the use of secondary analysis techniques and labeling agents. In this study, bare niosomes and chitosan-coated niosomes (chitosomes) and their interactions with intestinal cells are studied under dynamic conditions and without fluorescent probes, using surface plasmon resonance (SPR)-based cell sensing. Niosomes and chitosomes were synthesized by using Tween 20 and cholesterol in a 15 mM:15 mM ratio and then characterized by dynamic light scattering (DLS). DLS analysis demonstrated that bare niosomes had average sizes of ∼125 nm, polydispersity index (PDI) below 0.2, and a negative zeta (ζ)-potential of -35.6 mV. In turn, chitosomes had increased sizes up to ∼180 nm, with a PDI of 0.2-0.3 and a highly positive ζ-potential of +57.9 mV. The viability of HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultured cells showed that both niosomes and chitosomes are cytocompatible up to concentrations of 31.6 µg/mL for at least 240 min. SPR analysis demonstrated that chitosomes interact more efficiently with HT29-MTX, Caco-2, and Caco-2/HT29-MTX cocultures compared to bare niosomes. The resulting SPR measurements were further supported by confocal microscopy and flow cytometry studies, which demonstrated that this method is a useful complementary or even alternative tool to directly characterize the interactions between niosomes and in vitro cell models in label-free and real-time conditions.


Asunto(s)
Quitosano , Liposomas , Humanos , Células CACO-2 , Intestinos
17.
Int J Pharm ; 642: 123143, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37330154

RESUMEN

Delivery of cancer cell membranes (CM) is a new approach for the activation of the immune system and the induction of immunotherapy of cancer. Local delivery of melanoma CM into skin can induce efficient immune stimulation of antigen presenting cells (APCs), such as dendritic cells. In the current study, fast dissolving microneedles (MNs) were developed for the delivery of melanoma B16F10 CM. Two polymers were tested for the fabrication of MNs: poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) and hyaluronic acid (HA). The incorporation of CM in MNs was achieved through coating of the MNs using a multi-step layering procedure or the micromolding technique. The CM loading and its stabilization were improved by adding sugars (sucrose and trehalose) and a surfactant (Poloxamer 188), respectively. In an ex vivo experiment, both PMVE-MA and HA showed fast dissolutions (<30 s) after insertion into porcine skin. However, HA-MN showed better mechanical properties, namely improved resistance to fracture when submitted to a compression force. Overall, a B16F10 melanoma CM-dissolving MN system was efficiently developed as a promising device suggesting further studies in immunotherapy and melanoma applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Melanoma , Animales , Porcinos , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Polímeros/metabolismo , Piel/metabolismo , Membrana Celular , Ácido Hialurónico/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Agujas
18.
Biomater Sci ; 11(14): 4972-4984, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37334482

RESUMEN

Microfluidic on-chip production of polymeric hydrogel microspheres (MPs) can be designed for the loading of different biologically active cargos and living cells. Among different gelation strategies, ionically crosslinked microspheres generally show limited mechanical properties, meanwhile covalently crosslinked microspheres often require the use of crosslinking agents or initiators with limited biocompatibility. Inverse electron demand Diels Alder (iEDDA) click chemistry is a promising covalent crosslinking method with fast kinetics, high chemoselectivity, high efficiency and no cross-reactivity. Herein, in situ gellable iEDDA-crosslinked polymeric hydrogel microspheres are developed via water-in-oil emulsification (W/O) glass microfluidics. The microspheres are composed of two polyethylene glycol precursors modified with either tetrazine or norbornene as functional moieties. Using a single co-flow glass microfluidic platform, homogenous MPs of sizes 200-600 µm are developed and crosslinked within 2 minutes. The rheological properties of iEDDA crosslinked bulk hydrogels are maintained with a low swelling degree and a slow degradation behaviour under physiological conditions. Moreover, a high-protein loading capacity can be achieved, and the encapsulation of mammalian cells is possible. Overall, this work provides the possibility of developing microfluidics-produced iEDDA-crosslinked MPs as a potential drug vehicle and cell encapsulation system in the biomedical field.


Asunto(s)
Compuestos Heterocíclicos , Hidrogeles , Animales , Hidrogeles/química , Microfluídica , Encapsulación Celular , Química Clic , Electrones , Microesferas , Norbornanos/química , Mamíferos
19.
Mater Today Bio ; 20: 100672, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37273793

RESUMEN

Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.

20.
ACS Appl Mater Interfaces ; 15(21): 25860-25872, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37200222

RESUMEN

Biopolymeric injectable hydrogels are promising biomaterials for myocardial regeneration applications. Besides being biocompatible, they adjust themselves, perfectly fitting the surrounding tissue. However, due to their nature, biopolymeric hydrogels usually lack desirable functionalities, such as antioxidant activity and electrical conductivity, and in some cases, mechanical performance. Protein nanofibrils (NFs), such as lysozyme nanofibrils (LNFs), are proteic nanostructures with excellent mechanical performance and antioxidant activity, which can work as nanotemplates to produce metallic nanoparticles. Here, gold nanoparticles (AuNPs) were synthesized in situ in the presence of LNFs, and the obtained hybrid AuNPs@LNFs were incorporated into gelatin-hyaluronic acid (HA) hydrogels for myocardial regeneration applications. The resulting nanocomposite hydrogels showed improved rheological properties, mechanical resilience, antioxidant activity, and electrical conductivity, especially for the hydrogels containing AuNPs@LNFs. The swelling and bioresorbability ratios of these hydrogels are favorably adjusted at lower pH levels, which correspond to the ones in inflamed tissues. These improvements were observed while maintaining important properties, namely, injectability, biocompatibility, and the ability to release a model drug. Additionally, the presence of AuNPs allowed the hydrogels to be monitorable through computer tomography. This work demonstrates that LNFs and AuNPs@LNFs are excellent functional nanostructures to formulate injectable biopolymeric nanocomposite hydrogels for myocardial regeneration applications.


Asunto(s)
Gelatina , Nanopartículas del Metal , Nanogeles , Oro , Ácido Hialurónico/química , Antioxidantes , Muramidasa , Materiales Biocompatibles/química , Cicatrización de Heridas , Miocardio , Hidrogeles/farmacología , Hidrogeles/química , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA